Zika virus NS2B-NS3 protease: Crystal structure, substrate specificity, inhibitors

1st International Zika Conference
Washington, DC
U.S.A.
February 22 - 25, 2017
Organization of the Zika virus genome

NS2B-NS3pro cleavage motif: \(\ldots (G/K/S) (K/R) R \downarrow X X X \ldots \)}
Topology of the ZIKV polyprotein

Cytoplasm

ER Lumen

ZIKV protease
Signalase
Furin
Recombinant production of ZIKV NS2B-NS3pro yields disulfide-bonded dimers

SDS-PAGE
The ZIKV NS2B-NS3pro appears to be hyperactive

Substrate: Bz-Nle-Lys-Lys-Arg-AMC

<table>
<thead>
<tr>
<th></th>
<th>ZIKV (Monomer)</th>
<th>ZIKV (SS-Dimer)</th>
<th>ZIKV (C80S,C143S)</th>
<th>WNV</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{cat}/K_m (M-1s-1)</td>
<td>2440000 ± 215000</td>
<td>6650000 ± 3020000</td>
<td>5620000 ± 5460000</td>
<td>112000 ± 5000</td>
</tr>
<tr>
<td>K_{cat} (min-1)</td>
<td>2678 ± 60.66</td>
<td>1348.4 ± 127.96</td>
<td>1724.8 ± 29.22</td>
<td>521 ± 7.50</td>
</tr>
<tr>
<td>K_m (μM)</td>
<td>18.29 ± 1.59</td>
<td>3.378 ± 1.501</td>
<td>5.11 ± 0.49</td>
<td>77.41 ± 3.55</td>
</tr>
<tr>
<td>V_{max} (μM.min-1)</td>
<td>13.39 ± 0.30</td>
<td>3.371 ± 0.32</td>
<td>8.62 ± 0.15</td>
<td>10.42 ± 0.15</td>
</tr>
</tbody>
</table>

Values from literature (Vasudevan, Young, Lim, et al.)

WNV: $K_{\text{cat}}/K_m = 37000 ± 7000$ M-1s-1

DENV2: $K_{\text{cat}}/K_m = 30000 ± 7000$ M-1s-1

(Bz-Nle-Lys-Arg-Arg-AMC)
Overall structure of ZIKV NS2B-NS3pro in complex with the peptidyl boronic-acid compound cn-716

Blue: ZIKV NS2B
Brown: ZIKV NS3pro
Purple: cn-716
Green: Ser135-His51-Asp75

IC\textsubscript{50} = 0.25 ± 0.02 μM
K\textsubscript{i} = 0.040 ± 0.006 nM

Lei et al., Science 353, 503 – 505 (2016)
Details of the interaction between cn-716 and ZIKV NS2B-NS3^{pro}

The boronic acid forms a cyclic diester with glycerol.

Yellow: ZIKV NS2B; cyan: ZIKV NS3pro; purple: cn-716. K54 is from molecule B in the "tight dimer". Lei et al., Science \textbf{353}, 503 – 505 (2016)
<table>
<thead>
<tr>
<th>Protease</th>
<th>k_{cat} (min$^{-1}$)</th>
<th>K_m (μM)</th>
<th>k_{cat}/K_m (s$^{-1}$M$^{-1}$)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZIKV NS2B-NS3 (wt)</td>
<td>6.04 ± 0.24</td>
<td>32.10 ± 4.64</td>
<td>2421.5 ± 383.3</td>
<td>100%</td>
</tr>
<tr>
<td>ZIKV NS2B-NS3 (D83*N)</td>
<td>3.90 ± 0.27</td>
<td>37.12 ± 5.47</td>
<td>1749.73 ± 285.02</td>
<td>72.25%</td>
</tr>
<tr>
<td>WNV NS2B-NS3</td>
<td>0.24 ± 0.02</td>
<td>46.45 ± 8.87</td>
<td>442.8 ± 94.8</td>
<td>18.29%</td>
</tr>
</tbody>
</table>

NS2B residues are labeled with an asterisk (*).

The FRET substrate (Dabcyl-KTGKR↓SGAL-E(Edans)-amide), corresponding to the NS2B/NS3 cleavage site, was used for the measurements.

In the crystal, there are "tight dimers" of ZIKV NS2B-NS3pro linked by disulfide bonds

The "tight dimer" features pronounced shape complimentarity

Conclusions (I)

- The recombinant ZIKV NS2B-NS3pro is more active than the enzymes of WNV and DENV2
- The crystal structure and mutational analysis suggests that part of this hyperactivity is due to the Asp83* residue of NS2B
- The crystal structure with a boronic-acid inhibitor reveals the formation of a covalent adduct with S135 of the enzyme and of a cyclic diester with glycerol
Conclusions (II)

- In the crystal, a "tight dimer" of the ZIKV protease complex with the boronic acid is found, which is linked through disulfide bonds to neighboring tight dimers.
- The tight dimer shows a pronounced shape complementarity, but we cannot detect it in solution up to a concentration of 144 μM.
- However, in mass spectra, the tight dimer is detected.
- This dimer could be a model for the protease structure at the high concentrations existing at the ER membrane.
Acknowledgements

Coworkers

Jian Lei
Linlin Zhang
Yasmin Gül
Guido Hansen

Collaborators

Christoph Nitsche
Christian D. Klein
Wioletta Rut
Marcin Drag