The relevance of Zika epidemiological modelling studies in informing public health policies during the first wave of the Zika epidemic

Bertrand Sudre¹, Wim Van Bortel¹,², Herve Zeller³, Joacim Rocklöv⁴

International Conference on Zika Virus. February 23, 2017. Session 1 - Zika epidemiology.

1. Surveillance and Response Support Unit, European Centre for Disease Prevention and Control, Stockholm, Sweden
2. Institute of Tropical Medicine, Antwerp. Department of Biomedical Sciences, Unit of Medical Entomology, Antwerp, Belgium
3. Office Chief Scientist, European Centre for Disease Prevention and Control, Stockholm, Sweden
4. Epidemiology and Global Health Unit, Umeå University, Umeå, Sweden
Introduction

- Unusual increase of cases of microcephaly among newborns in the state of Pernambuco (Oct 2015) and Public Health Emergency of International Concern (Feb 2015)
- Outstanding increase of Zika virus disease research: pathogenesis, epidemiology, risk and infectious disease modelling, diagnostics, therapeutics and vaccines
- Challenges for public health to translate scientific knowledge into Zika virus prevention and control

Objectives

- Review epidemiology and especially on infectious disease modelling research published in the "acute phase" of Zika epidemic
- Relevance for public health
Methods: Literature search

Systematic search “Zika” on biomedical literature database (Pubmed and Embase) and preprint servers
Period: Nov 2015 to Jan 2017
\[n = 3176 \]

Selection on title and abstracts, \[n = 157 \]
Inclusion: epidemiological studies and infectious disease modelling
Exclusion: genetic study, literature review, cell biology, laboratory diagnostic and vaccine development

Second review on full text , \[n = 114 \]
Data extraction metadata (study design, publication date, PH relevance)
Results: outline of selected studies

Observational studies
- Descriptive
 - Surveillance data and case-series: 23
 - Ecological: 10
- Analytical
 - RO estimation (estimated from ZIKV epi. data): 8
 - Case-control: 5
 - Time-series: 4
 - Ecological niche modelling (using ZIKV epi. data): 3
 - Cohort: 2
 - Cross-sectional: 1

Experimental studies
- Theoretical simulation
 - Compartmental models: 29
 - Forecast: 8
 - Multicriteria analysis: 8
 - Decision-tree model: 3

Mixed design studies
- Mixed design (observationnal and experimental): 10

Total: 114
Results: time trend

Articles by month (Period: Jan 2016 - Jan 2017)

Number of references:
- Observational
- Experimental
- Mixed design
Results: time trend by study design

Number of references

- Surveillance data and case-series
- Ecological
- Cross-sectional
- Cohort
- Case-control
- RO estimation (ZIKV epi. data)
- Ecological niche modelling (ZIKV epi. data)
- Time-series
- Compartmental models
- Multi-criteria analysis (sim.)
- Decision-tree model
- Forecast
- Mixed design (observationnal and experimental)

Months

B. Sudre et al. Zika epidemiological modelling studies and public health policies. First International Conference on the Zika Virus. Session 1 - Zika epidemiology
Results

- Descriptive studies: surveillance data
- Observational analytical studies: risk assessment
 - Delays for specific target group (adverse outcomes during pregnancy and neonates follow-up)
 - Standardized research protocols
- Ecological studies remains of interest (co-factors)
- Experimental (theoretical simulations)
 - Spread into specific settings/group and epidemic pattern
 - Multi-criteria analysis and comprehensive study with mixed design: relevant but not standardized

Relevance

- Paramount importance for public health early phase of an a PHEIC
- Period at risk and co-factors

Results: reproductive number

- Surveillance data and case-series
- Ecological
- Cross-sectional
- Cohort
- Case-control
- RO estimation (ZIKV epi. data)
- Ecological niche modelling (ZIKV epi. data)
- Time-series
- Compartmental models
- Multi-criteria analysis (sim.)
- Decision-tree model
- Forecast
- Mixed design (observationnal and experimental)

Months

B. Sudre et al. Zika epidemiological modelling studies and public health policies. First International Conference on the Zika Virus. Session 1 - Zika epidemiology
Results: reproductive number

- Large number of articles (n=37, 27%): preprint servers and peer-review publications
- Estimated from epi-data vs compartmental models
- Complexity increase over time

Limitations

- Initially limited knowledge on
 - entomological parameters (EIP, vector competence & vectorial capacity, vertical transmission, temperature dependence)
 - epidemiological parameters (ratio asymptomatic/symptomatic, transmissibility person-to-person ...)

Relevance

- Assets for public health in an early phase of any PH emergency
- Challenge in assessing methods used and subsequent limitations
- Still limited number of compartmental models with a comprehensive assessment combining different modes of transmission
Results: ENM, multi-criteria and mixed design

- Surveillance data and case-series
- Ecological
- Cross-sectional
- Cohort
- Case-control
- RO estimation (ZIKV epi. data)
- Ecological niche modelling (ZIKV epi. data)
- Time-series
- Compartmental models
- Multi-criteria analysis (sim.)
- Decision-tree model
- Forecast
- Mixed design (observationnal and experimental)

B. Sudre et al. Zika epidemiological modelling studies and public health policies. First International Conference on the Zika Virus. Session 1 - Zika epidemiology
Results: ENM and multi-criteria analysis

- Ecological niche models (ENM): ZIKV disease vs *Aedes* vectors
- Integration of multi-criteria approach (relevant covariates)
- Spatial model with vectorial capacity (expected epidemic behaviour)

Limitations

- Difference with reference to methods among studies: standardization
- Spatial resolution and time variations

Relevance

- Added-value to delineate of area(s): circulation is on-going or can be expected
- Spatially explicit epidemic model: front wave/outbreak forecast under climate forcing
Results: prevention and control

- Few observational and modelling studies on:
 - Cost-effectiveness
 - Vector control strategy effect on health outcomes (vector population)
 - Enzootic cycle and level of transmission modelling after outbreak
 - End-points for disease prevention, outbreak control, and risk assessment

Limitations

- Time to collect data on vector control strategy & health outcomes
- Multidisciplinary approach required
- Limited knowledge in the eco-epidemiology of Zika virus (vector and host)

Relevance

- Optimal vector control
- Integration of uncertainties and scenario
Conclusions

• Outstanding research outcomes replying to Zika virus disease emergence

• “PH priority list” of relevant studies
 o Observational analytical studies
 o Specificity of mosquito-borne disease and infectious disease modelling
 - reliable knowledge on entomological and ecological parameters (e.g. vector competence, reservoir)
 - epidemiological parameters (ratio symptomatic/asymptomatic, herd immunity, sexual transmission)
 o Include assessment of strategies and vector control interventions in outbreak settings
 o Mixed design: theoretical simulation and multi-criteria approach including scenario and uncertainties
Future research topics linked to Zika and public health

Observational studies

- Descriptive: regional ecological studies (additional co-factors at population level)
- Analytical: case-control and pregnancy and newborns follow-up (strength of the association, risk per trimester and risk factor(s))

Experimental studies: infectious disease modelling

- Vector-borne/not vector borne transmission (compartmental and network)
- Future transmission pattern and possible scenario taking into account different potential drivers of endemicity (vector(s), host(s) herd immunity, metastability)
- Levels of transmission post-invasion & endemic setting under different scenario