A NOVEL BIOSILICA-BASED DETECTION SYSTEM FOR (RE)-EMERGING ARBOVIRAL INFECTIOUS DISEASES
Audrey Delots¹, Mélanie Dumay², Claudia Gestin-Vilion³, Guillian Graves⁴, Charlène Guillaume⁵, Cindy Hamamouche², Lise Hunault¹, Svetlana Ivanoff-Colleu⁵, Victoire Le Chevallier⁵, Vincent Legros⁵, Mathieu Hubert⁵, Victor Lépine⁵, Mélanie Lorin⁷, Marina Maletic⁸, Xavier Montoy⁴, Mehdi Morel⁷, Patsy Polston⁶, Thomas Vialon⁵, Deshmukh Gopaul⁴, Benoît Béliard⁵, Hanifa Bouzizi⁷, Marie Camman⁵, Lisa Dehove⁴


For several decades, vector-borne pathogens have been responsible for severe outbreaks and represented more than 17% of (re)-emerging infectious diseases. ZIKV, the causative agent of Zika, belongs to the Flaviviridae family and is an example of an arbovirus that is transmitted by Aedes aegypti and Aedes albopictus mosquitoes. Since its discovery in 1947 in Uganda, ZIKV caused several outbreaks which have been among the worst cases, with the most recent one in Brazil. Unfortunately, vaccine or specific treatments are not available, and the best way to fight against ZIKV remains vector control essentially by the over spraying of insecticides. Because this method causes some toxicity effects for the environment and insecticide (multi)-resistance into vectors, limiting spraying of insecticides only to concerned areas remains a priority. In this context, we investigated the development of an innovative device for the mapping of ZIKV-infected mosquitoes. Detection of ZIKV, but also other arboviruses, could be achieved by using a customizable detection patch that can point outmosquito-borne pathogens directly into their vector, upstream of the identification of human infected cases. This patch when coupled with a human pheromones-based mosquito trapping system, and a mapping software, is a strongly needed tool which will allow us to perform a high resolution surveillance of arbovirus circulation in order to focus our attention on infected regions only. As a consequence, rational use of insecticides and prevention of outbreaks can be implemented where infected mosquitoes are proliferating. In this work, we report the development of a synthetic biology-based composite arbovirus-detection patch. We took advantage of the biodegradability and inert properties of cellulose as the basis for the physical support. Moreover, by using a multifunctional fusion protein that is theoretically able to rigidify and functionalize the cellulose layer, we demonstrated a simple way to create a novel, user-friendly, safe, and low-cost immuno-detection system. This chip could potentially detect any arboviral proteins in mosquitoes. In preliminary studies we have demonstrated the ability of this protein to bind to cellulose and to bio-condense silicic acid into silica in solution. In addition, this assay is able to single-out the envelope protein of Chikungunya virus among mosquito proteins using specific antibodies. We consider these preliminary results as being very promising since the project was just awarded the “Best
Diagnostic Project” in the 2016 international genetically engineered machine competition.